

Vane motors single & double M3B - M4 / M4S series

Publ. 2 - EN1700 - A 01 / 02 / 3000 / FB Replaces : 2 - EN 157 - B

L13 - 21700 - 1

CONTENTS - M3* AND M4* SERIES

GENERAL	General characteristics	
	Technical data	
	General characteristics	
	Maximum speeds	
	Maximum speed and maximum continuous pressure	
	Motor selection	
	Description	8
	Ports	<u>ç</u>
	Hydraulic fluids	<u>ç</u>
	Shafts	10
	Minimum replenishment pressure	10
	Notes	11
мзв	Performance curves	12 & 13
	Ordering code, technical data and operating characteristics	
	Dimensions	
M4C - M4SC	Performance curves	
	Ordering code, technical data and operating characteristics	
	Dimensions	23
M4D - M4SD	Performance curves	
	Ordering code, technical data and operating characteristics	24
	Dimensions	25
M4E - M4SE	Performance curves	18
	Ordering code, technical data and operating characteristics	
	Dimensions	27
M4DC - M4SDC	Performance curves	
	Ordering code and technical data	
	Dimensions (rear ports) and operating characteristics	
	Dimensions (side and opposite ports)	
	Notes	31
	Addresses	30

CHARACTERISTICS - M3* AND M4* SERIES

HIGH STARTING TORQUE EFFICIENCY

The high starting torque efficiency of vane type motors makes them especially applicable in load hoist winch drives, swing drives and propulsion drives. This high starting torque efficiency allows the motor to start under high load without pressure overshoots, jerks and high instantaneous horsepower loads.

HIGH VOLUMETRIC EFFICIENCY

Vane motors begin life with high volumetric efficiency and maintain that efficiency throughout their operating life.

LOW TORQUE RIPPLE AT LOW SPEED

When operating at very low speeds on applications such as swing and load hoist drives, the vane motor exhibits very low torque ripple.

2 AND 3-SPEED VERSIONS AVAILABLE

The M4DC, because of its unequal size cartridges, allows the use of-3 speed operation. This makes them more applicable in traction drive circuits to replace manually shifted gear-boxes. 2-speed motors are available in a wider range of ratios than standard gear motors.

BALANCED DESIGN

Vane, rotor and cam ring are pressure balanced to increase life and efficiency over full speed range.

INTERCHANGEABLE ROTATING GROUPS

Rotating groups may be easily replaced to renew the motor or change displacement to suit altered requirements for speed or torque.

REVERSIBLE ROTATION

The motors may be stopped or reversed repeatedly and rapidly driving or braking the connected shaft load at controlled torque levels.

WIDE SPEED RANGE

Starting to maximum RPM, with full torque capability during acceleration.

PORTS AND MOUNTING

Conform fully to SAE J744c (ISO-3019-1) standards to simplify refitting and installation.

FIRE RESISTANT FLUIDS

Are easily used in the standard M3B and M4* versions of these motors. These include phosphate or organic ester fluids and blends, water-glycol solutions and water-oil invert emulsions.

M3B AND M4* SERIES MOTORS

The M3B and M4* have been designed especially for severe duty applications which require high pressure up to 230 bar, high speed up to 4000 RPM and low fluid lubricity (HF-1, HF-2A, HF-3, HF-4, HF-5).

TECHNICAL DATA - M3B AND M4* SERIES

		Displ.	Theor. Displ.	Torque T	Power at	Torque T	Power P	
Series	Series Size		V_i		100 Rev/min	n = 2000 RPM	at ∆ p 175 bar	
			ml/rev.	Nm/bar	kW/bar	N.m	kW	
		009	9,2	0,130	0,0015	19,7	4,3	
		012	12,3	0,186	0,0020	26,7	5,8	
M3	B B1	018	18,5	0,304	0,0032	46,6	10,0	
	DI	027	27,8	0,485	0,0050	77,4	16,3	
		036	37,1	0,624	0,0065	102,0	21,1	
		024	24,4	0,39	0,0040	60,5	12,7	
		027	28,2	0,45	0,0047	70,0	14,7	
	C C1	031	34,5	0,55	0,0058	86,8	18,0	
	SC	043	46,5	0,74	0,0078	120,0	25,1	
	SC1	055	58,8	0,93	0,0098	149,0	31,2	
		067	71,1	1,13	0,0120	170,0	35,6	
		075	80,1	1,27	0,0130	198,0	41,5	
		062	65,1	1,04	0,0110	165,0	34,6	
		074	76,8	1,22	0,0130	200,0	41,9	
M4	D D1	088	91,1	1,45	0,0150	236,0	49,4	
	SD	102	105,5	1,68	0,0180	264,0	55,3	
	SD1	113	116,7	1,86	0,0200	300,0	62,8	
		128	132,4	2,11	0,0220	340,0	71,2	
		138	144,4	2,30	0,0240	372,0	77,9	
	Е	153	158,5	2,52	0,0260	398,0	83,4	
	E1	185	191,6	3,05	0,0320	484,0	101,4	
	SE/SE1	214	222,0	3,53	0,0370	567,0	118,8	
	DC DC1 SDC SDC1	See M4C/C1/SC/SC1 and M4D/D1/SD/SD1						

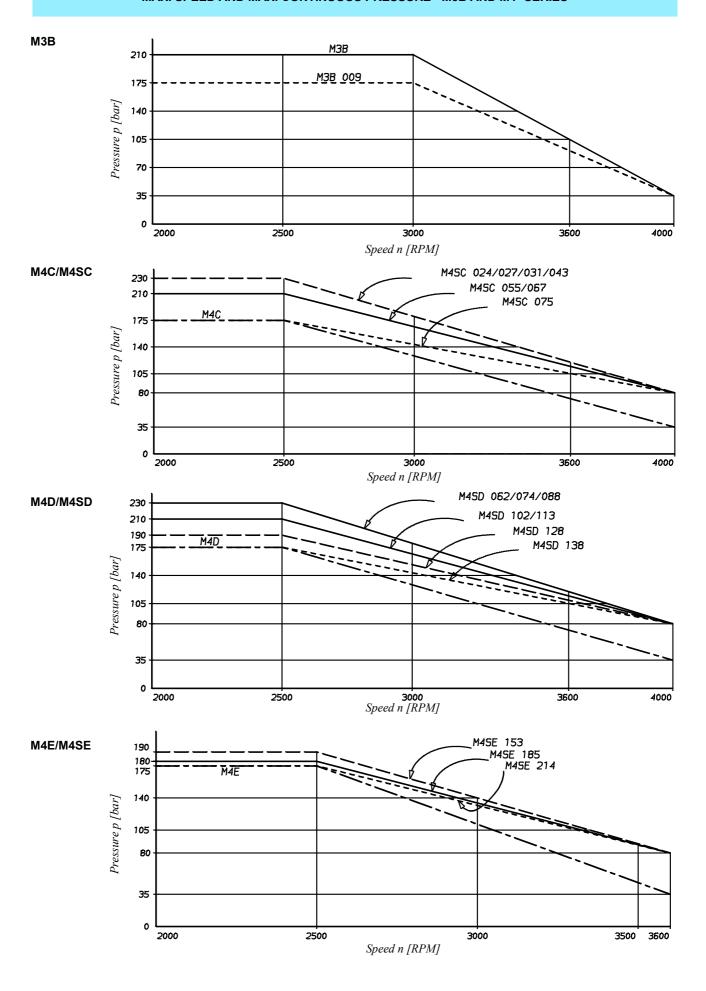
Internal drain: All these motors may be equiped with internal drain. Then the model numbers will be M3B1, M4C1, M4SC1, M4D1, M4SD1, M4E1, M4SD1, M4SD1, M4SD1.

For further information or if the performance characteristics outlined above do not meet your own particular requirements, please consult your local DENISON Hydraulics office.

GENERAL CHARACTERISTICS

	Mounting standard	Weight without connector and bracket - kg	Moment of inertia kgm ² x 10 ⁻⁴	Option for inlet and outlet port		
МЗВ	SAE J744c ISO/3019-1 SAE A	8,0	3,0	SAE threaded SAE 4 bolt J718c ISO/DIS 6162-1 - 3/4" BSPP threaded		
M4C/SC	SAE J744c ISO/3019-1 SAE B	15,4	7,9	SAE threaded SAE 4 bolt J718c ISO/DIS 6162-1 - 1"		
M4D/SD	SAE J744c ISO/3019-1 SAE C	27,0	21,8	SAE threaded SAE 4 bolt J718c ISO/DIS 6162-1 - 1"1/4		
M4E/SE	SAE J744c ISO/3019-1 SAE C	45,0	58,5	SAE threaded SAE 4 bolt J718c ISO/DIS 6162-1 - 2"		
M4DC/SDC	SAE J744c ISO/3019-1 SAE C	40,0	29,4	SAE 4 bolt J718c P2 = See M4C/M4SC ISO/DIS 6162-1 - 1"1/4		

MAXIMUM SPEED, PRESSURE RATINGS - M3B AND M4* SERIES


				Max	x. pres	sure		Operating	Max. speed	Max.	speed	for ma	x. pres	sure ra	tings																	
			HF-0	HF-2A		HF-3	HF-4	pressure	for low loaded condition 1)	HF-0,	HF-2	HF-	-2A	HI	F-1																	
Series	Size	Displ.	HF-2			HF-5		range drain	lrain condition '	Cont.		Cont.	Int. ²⁾		Int. ²⁾																	
			bar	bar	bar	bar	bar	bar	RPM	RPM	RPM	RPM	RPM	RPM	RPM																	
		009	175																													
M3	В	012	_					1,5	4000	3000	3600																					
	B1	018 027	210					-,-																								
		036																														
		024																														
		027																														
	C C1	031																														
		043	175	175	175																											
		055																														
		067 075	<u> </u> 																													
		024							4000	2500	3600	2500	3000	2000	2500																	
		027	-																													
	SC SC1	031	230	210																												
	301	043			175	175	140																									
		055	210	210																												
		067	1.7.5	1.7.5																												
		075 062	175	175																												
		074			140																											
	Б	088	175	175																												
	D D1	102	175	175						2500 3000																						
		113	_																													
		128																														
		138							4000		2500 2800	2000 2500																				
M4		062 074	230	190				3,5																								
1014	an.	088			1.40	1.40		3,3																								
	SD SD1	102	210	190	140	140	140																									
		113																														
		128	190	190																												
		138	175	175																												
	Е	153 185	175	175	140																											
	E1	214							3600 2500	3600 2500	3600 2500	2.00		3600	3600 250	3600 2500 3	3600						2.000		• 600		2600					
		153	190									3600 2	3600 2500				2800	1800	2200													
	SE	185	180	175	140	140	140																									
	SE1	214	175																													
	DC DC1	All models	175	175	140																											
	DC1	D-062																														
		at 088																														
		C-024	230	190																												
		at 043 D-102																														
	SDC SDC1	D-102			140	140	140		4000	2500	3000	2500	2800	2000	2500																	
	SDC1	C-055	210	190	140	140	140		4000																							
		C-067																														
		D-128	177	177																												
		D-138	175	175																												
		C-075																														

¹⁾ Low loaded condition 35 bar for M3 and M4, 80 bar max. for M4S (see page 6).

²⁾ Intermittent speed - Do not exceed 6 seconds per minute of operation. HF-0, HF-2 = Antiwear petroleum base. HF-2A = Crankcase. HF-1 = Non antiwear petroleum base. HF-5 = Synthetic fluids.

HF-3 = Water in oil emulsions. HF-4 = Water glycols.

Internal drain: All these motors may be equiped with internal drain. Then the model numbers will be M3B1, M4C1, M4SC1, M4D1, M4SD1, M4E1, M4SE1, M4DC1, M4SDC1.

MOTOR SELECTION - M3B AND M4* SERIES

Performances required

Torque T[N.m.]140

Pump flow (available)

at 24 cSt q_{Ve} [l/min] 115 Speed n [RPM] 1500

Pressure p [bar] 175 1. Check if available power is compatible with required power (0.85 estimated overall efficiency).

$$0.85 \ x \frac{Q \ Ve}{600} \ge \frac{T x \pi n}{30 \ x \ 1000}$$
$$0.85 \ x \frac{115 \ x \ 175}{600} \ge \frac{140 \ x \pi \ x \ 1500}{30 \ x \ 1000}$$
$$28.5 > 22$$

Two ways of calculation:

2a.Calculate V_i from T required torque

$$V_i = \frac{20 \pi x T}{p} = \frac{20 \pi x 140}{175} = 50,26 \frac{ml}{rev}$$

3a. Motor choose from V_i immediately greater

 $M4C~055~V_i = 58.8~ml/rev.$

4a. Check real motor pressure for T = 140 Nm. around 1500 RPM $M4C\ 055\ T = 140\ N.m\ n = 1500\ RPM$ $p = 163 \ bar (see page 15)$

5a. Flow loss M4C 055 at 163 bar at 24 cSt

 $q_{\rm Vs} = 16 \ l/min \ (see page 22)$

Real flow used by the motor: $q_V = q_{Ve} - q_{Vs} = 115 - 16 = 99 \text{ l/min}$

6a. Real speed of the motor: $n = \frac{q_V x \ 1000}{V_i} = \frac{99 \ x \ 1000}{58,8} = 1680 \ RPM$ 2b. Calculate V_i from q_{Ve} available flow

$$V_i = \frac{1000 \times 115}{1500} = 76.6 \, \text{ml/rev.}$$

3b. Motor choose from V_i immediately smaller

 $M4C\ 067\ V_i=71,1\ ml/rev.\ (see page\ 22)$

4b. Check motor press. with T = 140 Nm. at 1500 RPM

 $M4C\ 067\ T = 140\ Nm.\ n = 1500\ RPM$ p = 140 bar (see page 15)

5b. Flow loss of M4C 067 at 140 bar at 24 cSt

 $q_{\text{Vs}} = 14 \text{ l/min (see page 22)}$

Real flow used by the motor:

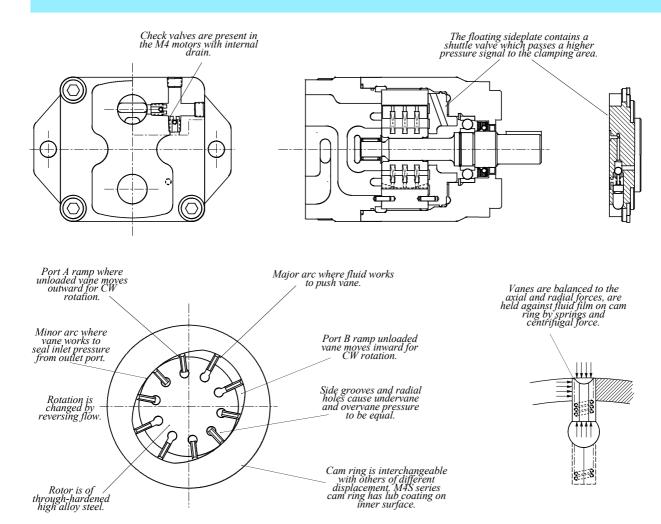
 $q_V = q_{Ve} - q_{Vs} = 115 - 14 = 101 \text{ l/min}$

6b. Real speed of the motor:

$$n = \frac{q_V x \hat{1000}}{V_i} = \frac{101 x 1000}{71,1} = 1420 RPM$$

Real performances

Vi 58,8 ml/rev. 1680 RPM n T = 140 Nm.


163 bar

Real performances

Vi 71,1 ml/rev. = 1420 RPM n T = 140 Nm. 140 bar

In each case always choose the smallest motor which will operate at the highest speed and pressure, and offers the most efficient solution.

DESCRIPTION - M3* AND M4* SERIES

OPERATION -SINGLE CARTRIDGE

- The motor shaft is driven by the rotor. Vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.
- Light springs urge the vanes radially against the cam contour assuring a seal at zero speed so the motor can develop starting torque. The springs are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through opening in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.
- The rotor is separated axially from the sideplate surfaces by the fluid film. The
 front sideplate is clamped against the cam ring by the pressure, maintains optimum
 clearance as dimensions change with temperature and pressure. A 3-way shuttle
 valve in the sideplate causes clamping pressure in Port A or B, whichever is the
 highest.
- Materials are chosen for long life efficiency. Vanes, rotor and cam ring are made out of hardened high alloy steels. Cast semi-steel sideplates are chemically etched to have a fine crystalline surface for good lubrication at start-up.

PORTS AND HYDRAULIC FLUIDS - M3B AND M4* SERIES

PORTS
EXTERNALLY DRAINED
SINGLE CARTRIDGE MOTORS

These motors may be alternately pressurized at Ports A & B to 230 bar max. Whichever port is at low pressure should not be subjected to more than 35 bar. If it is necessary to exceed these limitations, please contact DENISON Hydraulics for application assistance.

INTERNALLY DRAINED TANDEM CARTRIDGE MOTORS

These motors must have a drain line connected to the center housing drain connection of sufficient size to prevent back pressure in excess of 3,5 bar, and returned to the reservoir below the surface of the oil as far away from the supply pump suction as possible. Model M4DC1 does not require an external drain line, however the outlet pressure must not exceed 3,5 bar.

INTERNALLY DRAINED MOTORS (M4C1, M4D1, M4E1, M4DC1) May be alternately pressurized at Ports A & B to 230 bar max. Whichever port is at low pressure must not be subjected to more than 1,5 bar for M3B, 3,5 bar for M4* (pressure peak 7 bar).

To insure maximum motor performance in conjunction with your specific application, consult your DENISON Hydraulics Representative if your application requires:

- minimum speed of less than 100 RPM,
- indirect drive,
- overrunning loads,
- braking or retarding.

M4S SEVERE DUTY MOTORS

M4S motors are recommended to be used when back pressure is over 140 bar and speed is over 2000 RPM. They are also recommended when fluid viscosity can be under 25 cSt and speed over 2000 RPM. For such severe duty applications M4S motors will exhibity longer life time at high efficiency.

RECOMMENDED FLUIDS

Petroleum based antiwear R & O fluids.

These fluids are the recommended fluids for M3B and M4* series motors. Maximum catalog ratings and performance data are based on operation with these fluids. These fluids are covered by DENISON Hydraulics HF-0 and HF-2 specifications.

Acceptable alternate fluids:

ACCEPTABLE ALTERNATE FLUIDS

The use of fluids other than petroleum based antiwear R & O fluids requires that the maximum ratings of the motors will be reduced. In some cases, the minimum replenishment pressures must be increased. Refer to the following chart and the operating characteristics chart for each M3B and M4* motor model for specific details of the reduced ratings.

VISCOSITY

Max. (cold start, low speed & pressure)	$860 \text{ mm}^2/\text{s (cSt)}$
Max. (full speed & pressure)	$108 \text{ mm}^2/\text{s} \text{ (cSt)}$
Optimum (max. life)	$_{2}$ 30 mm ² /s (cSt)
Min. (full speed & pressure for HF-1 fluid)	$18 \text{ mm}^2/\text{s} \text{ (cSt)}$
Min. (full speed & pressure for HF-0 & HF-2 fluids)	$\frac{10}{10}$ mm ² /s (cSt)

VISCOSITY INDEX

90° min. Higher values extend range of operating temperatures and life time.

HF-0, HF-1, HF-2	+ 100°
Minimum fluid temperature (θ) °C	
HF-0, HF-1, HF-2	- 18°

FLUID CLEANLINESS

The fluid must be cleaned before and during operation to maintain contamination level of NAS 1638 class 8 (or ISO 18/14) or better. Filters with 25 micron (or better, β 10 \geq 100) nominal ratings may be adequate but do not guarantee the required cleanliness levels.

OPERATING TEMPERATURES AND VISCOSITIES

Operating temperatures are a function of fluid viscosities, fluid type, and the pump. Fluid viscosity should be selected to provide optimum viscosity at normal operating temperatures. For cold starts the pumps should be operated at low speed and pressure until fluid warms up to an acceptable viscosity for full power operation.

WATER CONTAMINATION IN THE FLUID

Maximum acceptable content of water.

- 0,10 % for mineral base fluids.
- 0,05 % for synthetic fluids, crankcase oils, biodegradable fluids. If amount of water is higher then it should be drained off the circuit.

SHAFTS AND MINIMUM REPLENISHMENT PRESSURE (BAR) - M3B AND M4* SERIES

SPLINED SHAFTS COUPLINGS SPLINES

- The mating female spline should be free to float and find its own center. If both members are rigidly supported, they must be aligned within 0,15 TIR or less to reduce fretting. The angular alignment of two spline axes must be less than \pm 0,002 mm/mm.
- The coupling spline must be lubricated with a lithium molydisulfide grease or a similar lubricant.
- The coupling must be hardened to a hardness between 27 and 45 HRc.
- The female spline must be made to confom to the Class 1 fit as described in SAE-J498b (1971). This is described as a Flat Root Side Fit.

KEYED SHAFT

DENISON Hydraulics supplies the M3B and M4* series keyed shaft motors with high strength heat-treated keys. Therefore, when installing or replacing these motors, the heat-treated keys must be used in order to ensure maximum life in the application. If the key is replaced, it must be a heat-treated key between 27 and 34 R.C. hardness. The corners of the keys must be chamfered 0,76 to 1,02 at 45° to clear radii in the key way.

NOTE

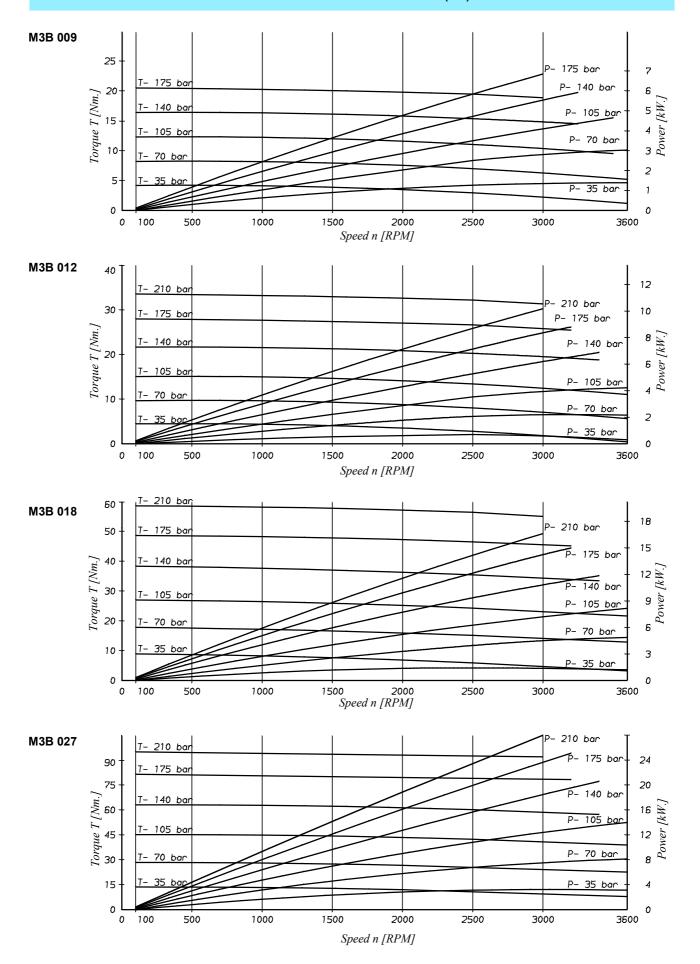
SHAFT LOADS

Alignment of keyed shafts must be within tolerances given for splined shafts.

Axial or radial load are permissible. Consult specific sections for more details.

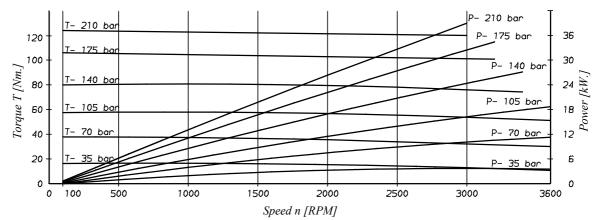
MINIMUM REPLENISHMENT PRESSURE (BAR)

Series	Speed [RPM] - Oil viscosity = 32 cSt								
	500	1000	2000	3000	3600				
МЗВ	0,6	1,0	1,9	3,5	5,8				
M4C/SC	0,7	1,4	3,1	5,5	9,3				
M4D/SD	0,7	1,4	3,1	5,5	9,3				
M4E/SE	1,4	2,8	5,2	11,0					
M4DC/SDC				•					
2-C-DC	1,7	3,8	10,0	22,4	28,3				
2-D-DC	1,1	1,7	5,5	10,7	15,1				
3-D-C-DC	1,7	3,8	10,0	22,4	28,3				


The inlet port of the fluid motor must be supplied with replenishment pressure as listed above to prevent cavitation during dynamic braking. These pressures should be multiplied by a coefficient of 1,5 for M4S motors used with fire resistant fluids (HF-3, HF-4, HF-5).

Replenishment pressure for tandem 2 & 3-speed motors must be provided during periods when the motor is dynamic braking, shutting down or coasting. When the motor is operating in the high speed mode and the nonworking cartridge is at low pressure, it is necessary to create a back pressure, as listed above, at the motor discharge port. The above mentioned minimum replenishment pressure chart is for maximum displacement cartridges. Smaller cartridges require lower minimum pressures.

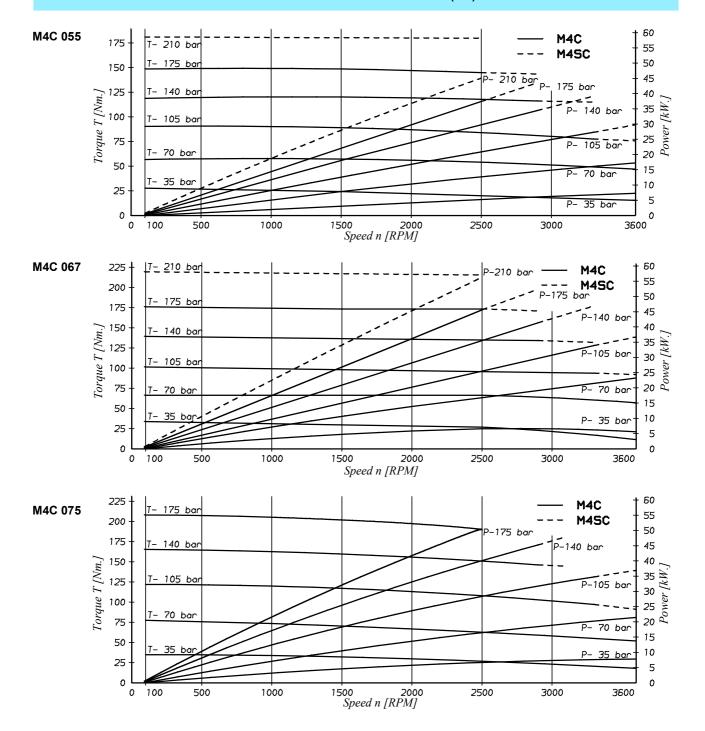
Contact DENISON Hydraulics for further information.

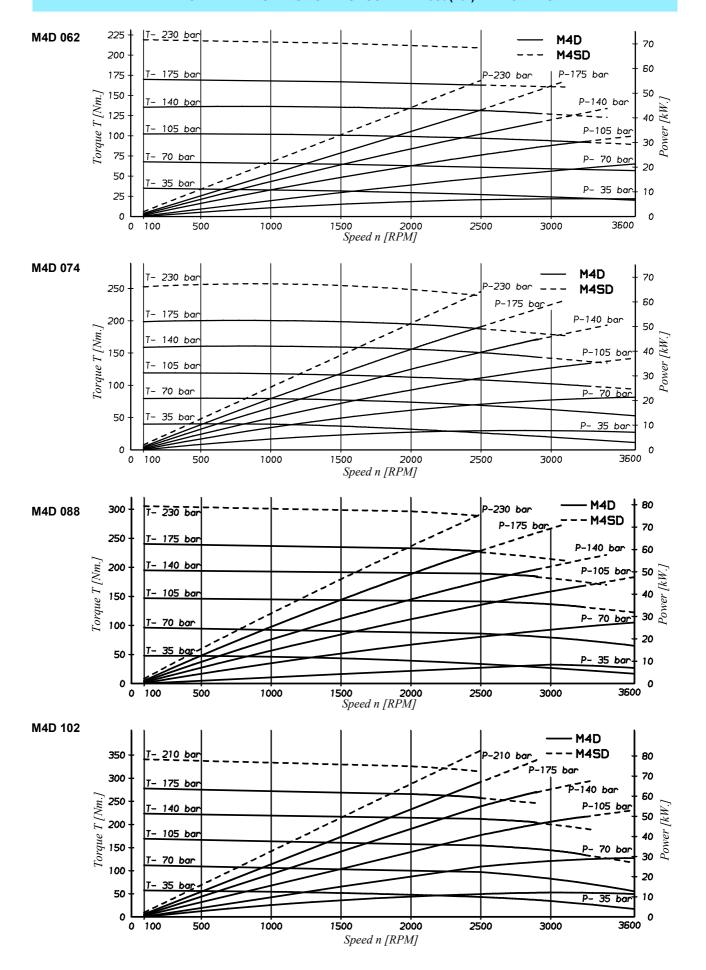

NOTES - M3B AND M4* SERIES

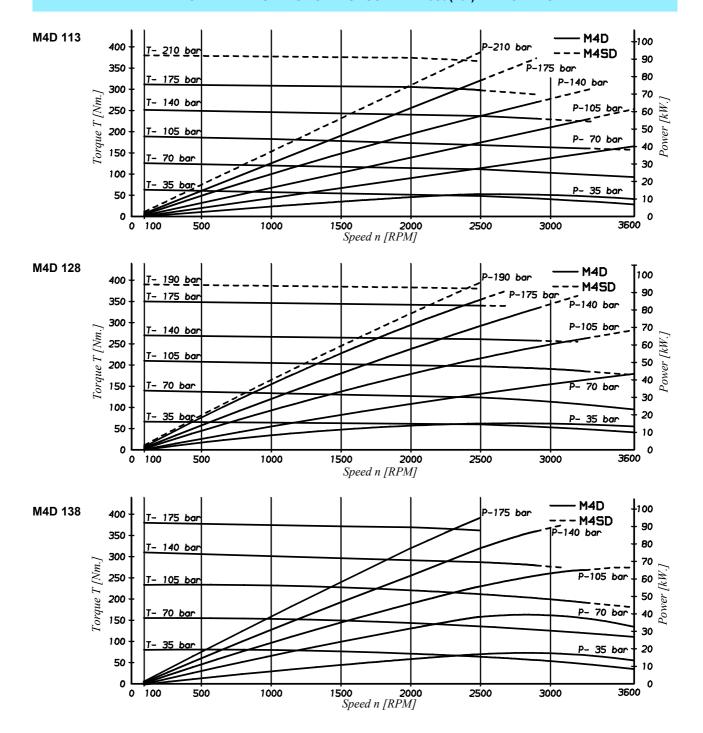
PERFORMANCE CURVES - OIL VISCOSITY: 24 cSt (45°) - M3B SERIES

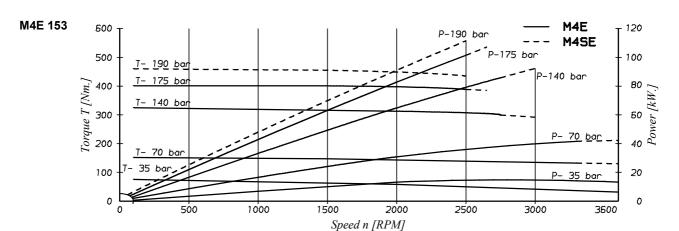


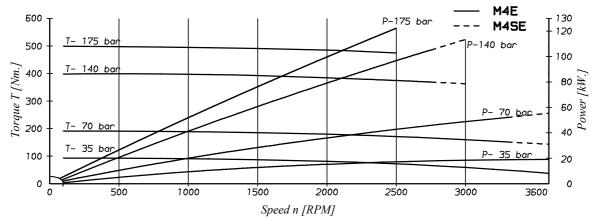
PERFORMANCE CURVES - OIL VISCOSITY: 24 cSt (45°) - M3B SERIES

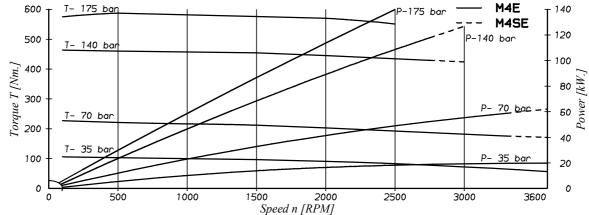

M3B 036

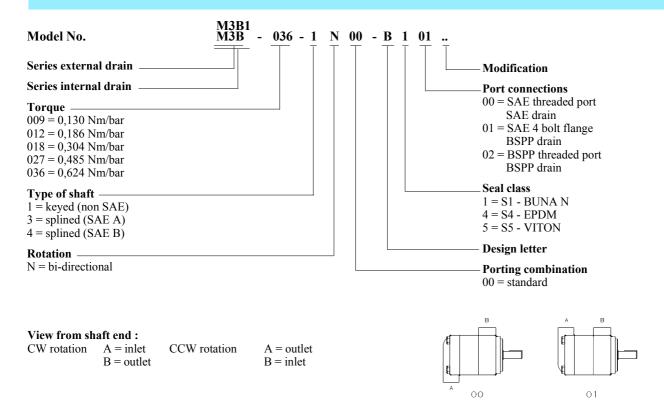

PERFORMANCE CURVES - OIL VISCOSITY: 24 cSt (45°) - M4* SERIES

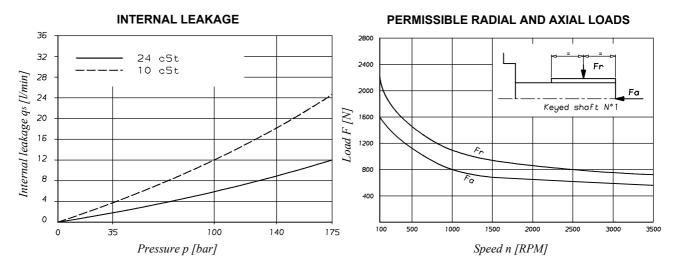



PERFORMANCE CURVES - OIL VISCOSITY: 24 cSt (45°) - M4* SERIES

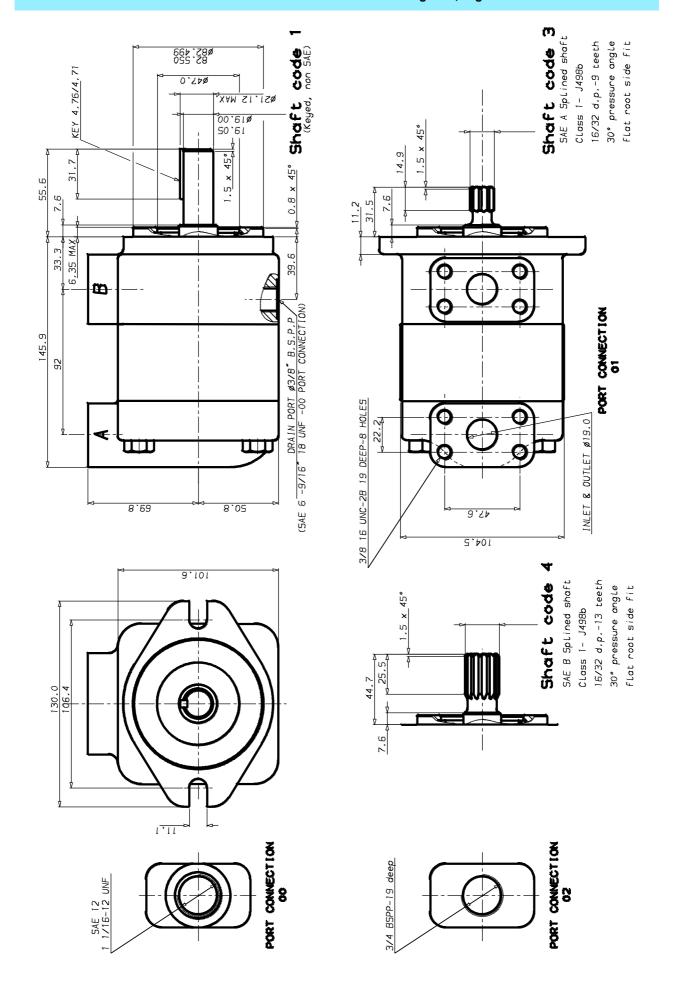

PERFORMANCE CURVES - OIL VISCOSITY: 24 cSt (45°) - M4* SERIES

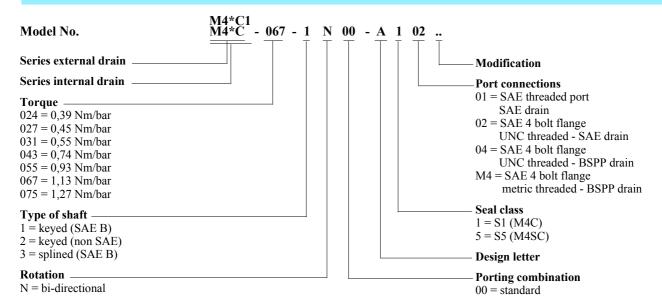






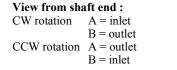
NOTES - M4* SERIES

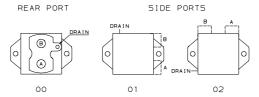

ORDERING CODE - M3B SERIES

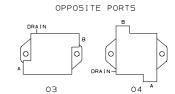


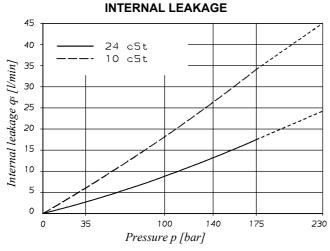
Do not apply Fr and Fa loads simultaneously

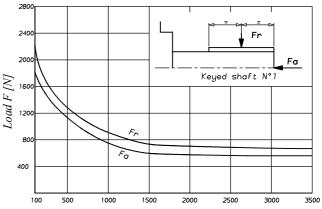
Model	Volumetric displacement V _i	Input flow at	n = 2000 RPM	Torque T at n = 2000 RPM	Power output at n = 2000 RPM
		Theorical	at 175 bar ∆ p	at 175 bar ∆ p	at 175 bar ∆ p
	ml/rev.	l/min	l/min	Nm	kW
M3B 009	9,2	18,4	30,4	19,7	4,3
M3B 012	12,3	24,6	36,6	26,7	5,8
M3B 018	18,5	37,0	49,0	46,6	10,0
M3B 027	27,8	55,6	67,6	77,4	16,3
M3B 036	37,1	74,2	86,2	102,0	21,1

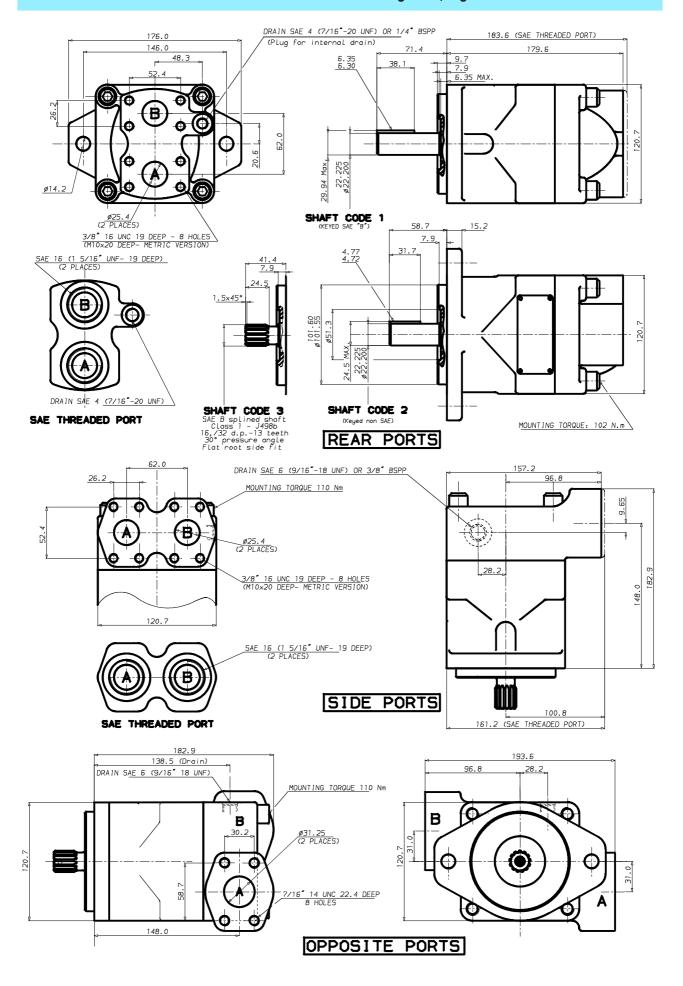

ORDERING CODE - M4C - M4SC SERIES



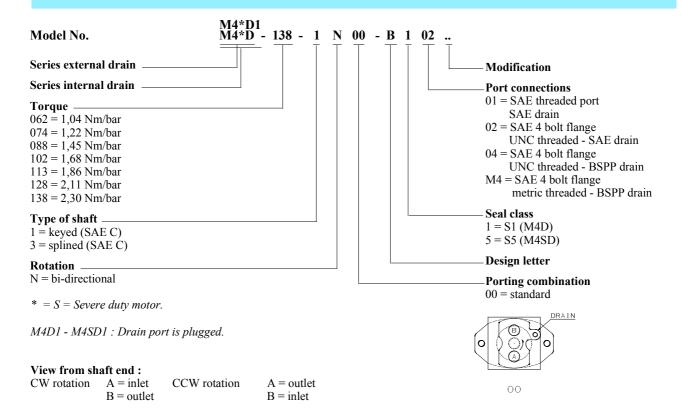

^{* =} S = Severe duty motor.

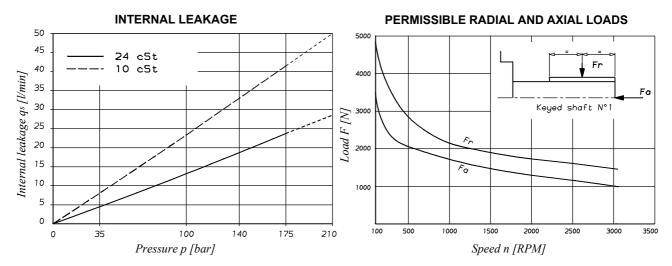

M4C1 - M4SC1: Drain port is plugged.


Porting combination

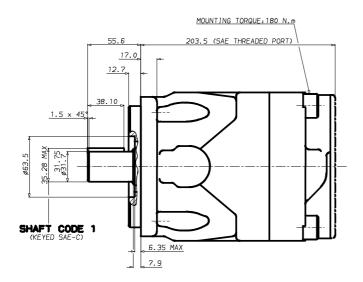


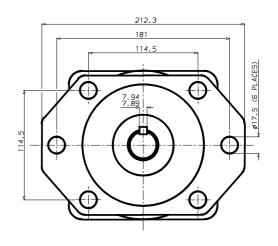
Speed n [RPM]

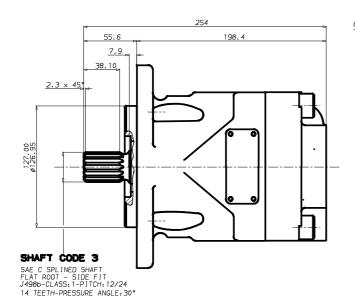

PERMISSIBLE RADIAL AND AXIAL LOADS

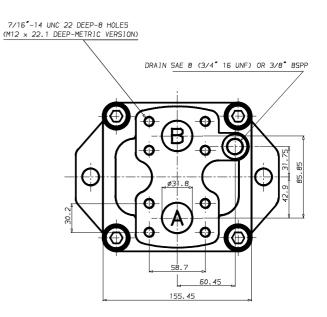

Do not apply Fr and Fa loads simultaneously

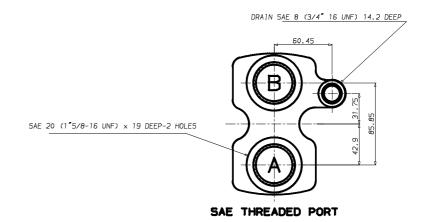
DPERATING CHARACTERISTICS - ITPICAL [24 CSL]									
Model	Volumetric displacement Vi	Input flow at	n = 2000 RPM	Torque T at n = 2000 RPM	Power output at n = 2000 RPM				
		Theorical	Theorical at 175 bar ∆ p		at 175 bar ∆ p				
	ml/rev.	l/min	l/min	Nm	kW				
M4C - M4SC 024	24,4	49,0	67,0	60,5	12,7				
M4C - M4SC 027	28,2	56,0	74,0	70,0	14,7				
M4C - M4SC 031	34,5	69,0	87,0	86,8	18,0				
M4C - M4SC 043	46,5	93,0	111,0	120,0	25,1				
M4C - M4SC 055	58,8	118,0	136,0	149,0	31,2				
M4C - M4SC 067	71,1	142,0	160,0	170,0	35,6				
M4C - M4SC 075	80,1	160,0	178,0	198,0	41,5				

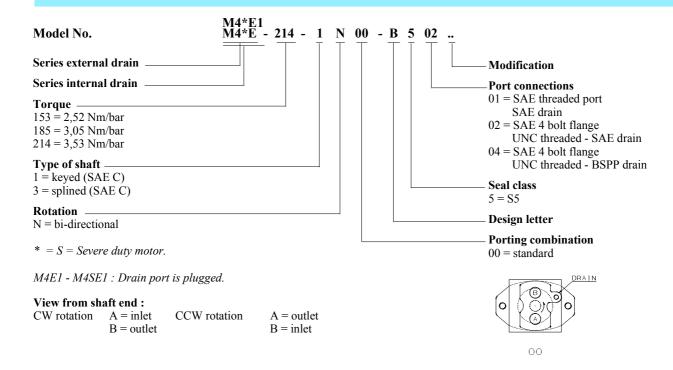

ORDERING CODE - M4D - M4SD SERIES

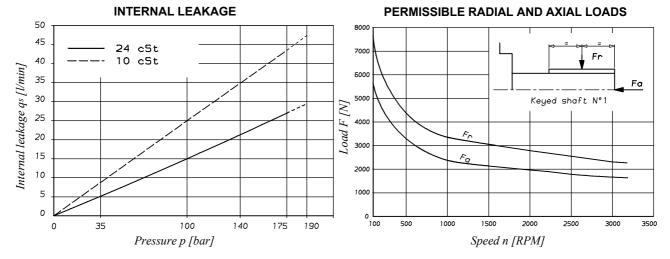




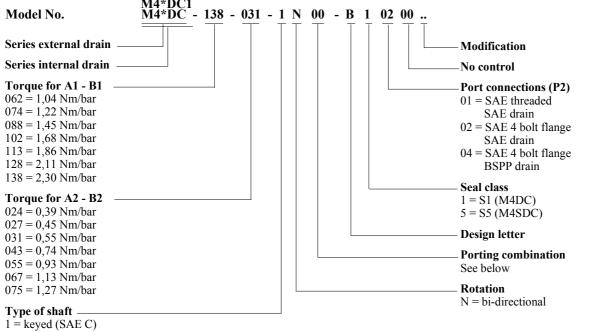

Do not apply Fr and Fa loads simultaneously


Model	Volumetric displacement Vi	Input flow at	n = 2000 RPM	Torque T at n = 2000 RPM	Power output at n = 2000 RPM				
		Theorical	at 175 bar ∆ p	at 175 bar ∆ p	at 175 bar ∆ p				
	ml/rev.	l/min	l/min	Nm	kW				
M4D - M4SD 062	65,1	130,0	154,0	165,0	34,6				
M4D - M4SD 074	76,8	154,0	178,0	200,0	41,9				
M4D - M4SD 088	91,1	182,0	206,0	236,0	49,4				
M4D - M4SD 102	105,5	211,0	241,0	264,0	55,3				
M4D - M4SD 113	116,7	233,0	257,0	300,0	62,8				
M4D - M4SD 128	132,4	265,0	289,0	340,0	71,2				
M4D - M4SD 138	144.4	289.0	313.0	372.0	77.9				





ORDERING CODE - M4E - M4SE SERIES

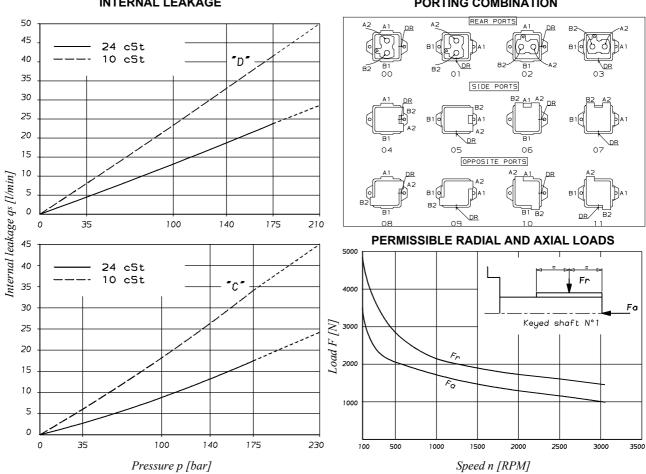


Do not apply Fr and Fa loads simultaneously

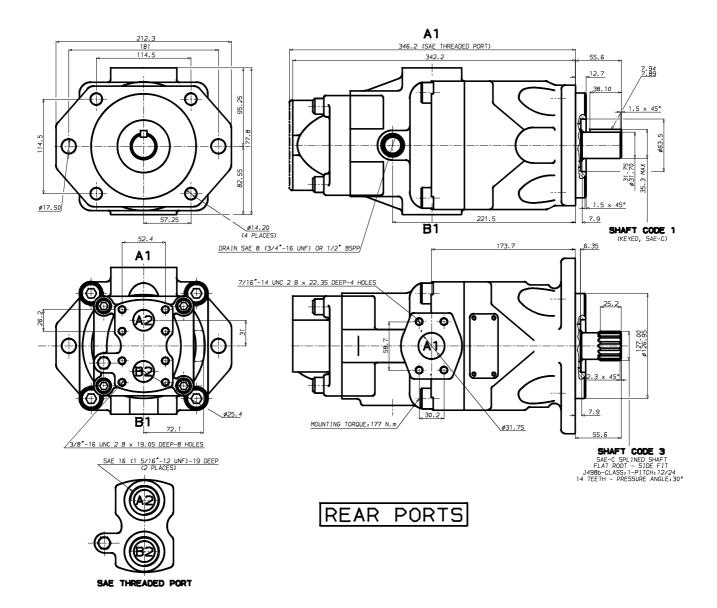
Model	Volumetric displacement V _i	Input flow at	n = 2000 RPM	Torque T at n = 2000 RPM	Power output at n = 2000 RPM
		Theorical	at 175 bar ∆ p	at 175 bar ∆ p	at 175 bar ∆ p
	ml/rev.	l/min	l/min	Nm	kW
M4E - M4SE 153	158,5	317,0	343,0	398,0	83,4
M4E - M4SE 185	191,6	383,0	409,0	484,0	101,4
M4E - M4SE 214	222,0	444,0	470,0	567,0	118,8

3 =splined (SAE C)

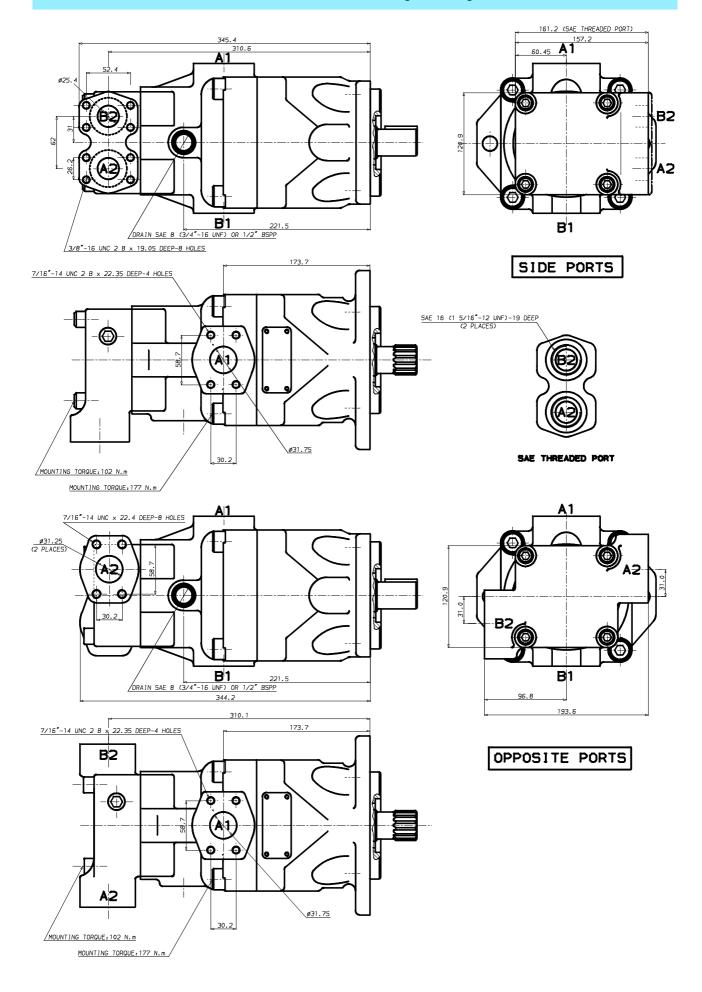
* = S = Severe duty motor.


M4DC1 - M4SDC1: Drain port is plugged.

View from shaft end:


CW rotation A = inletCCW rotation A = outletB = outletB = inlet

INTERNAL LEAKAGE


PORTING COMBINATION

Do not apply Fr and Fa loads simultaneously

Model	Volumetric displacement	Input flow at	Input flow at n = 2000 RPM		Power output at n = 2000 RPM
	V_{i}	Theorical	at 175 bar ∆ p	at 175 bar ∆ p	at 175 bar ∆ p
	ml/rev.	l/min	l/min	Nm	kW
M4D - M4SD 062	65,1	130,0	154,0	165,0	34,6
M4D - M4SD 074	76,8	154,0	178,0	200,0	41,9
M4D - M4SD 088	91,1	182,0	206,0	236,0	49,4
M4D - M4SD 102	105,5	211,0	241,0	264,0	55,3
M4D - M4SD 113	116,7	233,0	257,0	300,0	62,8
M4D - M4SD 128	132,4	265,0	289,0	340,0	71,2
M4D - M4SD 138	144,4	289,0	313,0	372,0	77,9
M4C - M4SC 024	24,4	49,0	67,0	60,5	12,7
M4C - M4SC 027	28,2	56,0	74,0	70,0	14,7
M4C - M4SC 031	34,5	69,0	87,0	86,8	18,0
M4C - M4SC 043	46,5	93,0	111,0	120,0	25,1
M4C - M4SC 055	58,8	118,0	136,0	149,0	31,2
M4C - M4SC 067	71,1	142,0	160,0	170,0	35,6
M4C - M4SC 075	80,1	160,0	178,0	198,0	41,5

NOTES - M4* SERIES